
| Photo by Jeffery Cheng

MA35D0 Secure Boot
Introduction

Aaron Chen

MA35D0 TF-A FW Architecture

⚫ Reference implementation of
secure world software

⚫ Boot loader in each stage

➢ Trusted Board Boot Requirement-
TBBR- BL2

➢ Power Status Coordination Interface
and Secure monitor - BL31

➢ TEE OS – BL32 (OP-TEE)

➢ U-boot – BL33

BL32 BL2

BL31

BL33

Secure

Boot Loader X - BLx

Source: https://firmwaresecurity.com/2015/05/23/arm-trusted-firmware/

MA35D0 Boot Sequence with TF-A

⚫ Root of trust by Mask ROM(IBR)

⚫ Implemented using ECDSA and AES

⚫ First stage

➢ IBR(BL1) -> BL2

⚫ Second stage

➢ BL2 -> BL31 -> BL32 -> BL33

(Secure) (Non-secure)

Mask ROM

Bootloader
(BL1)

Bootloader
(BL1)

Trusted Firmware
(BL2)

MA35D1MA35D1

Boot

Secure Code
(BL31)

Non-secure Code
(BL33)

Identity, Integrity

Load & Verify

Execute

Linux Kernel

Load
& execute

Secure Boot Verification
& execute

Load &
Verify

& execute

OP-TEE
(BL32)

Load
& Verify

execute

MA35D0 Firmware Authentication (1/3)

 Secure Boot authenticates application code before allow it to run.

➢ immutable ROM code verifies firmware’s digital signature after system power-on

4

Only the firmware passing digital signature
verification can run on the MCU

bootloader

Firmware Signature

Signature verification


Execute Abort

Flash memory

ROM

MA35D0 Firmware Authentication (2/3)

 Digital Signature

。 Digital signatures employ asymmetric cryptography

▪ ECDSA (Elliptic Curve Digital Signature Algorithm)

▪ RSA PKCS#1 and ANS X9.31

。 Provides Data Integrity and Non-repudiation (Authenticity)

。 It is a cryptographic value that is calculated from the data and a private key
known only by the signer.

▪ Security level depends on the size of key (usually expressed in "bits“)

5

Source : WIKIPEDIA

SHA-256 : has 128-bit security level to
against collision attacks

MA35D0 Firmware Authentication (3/3)

 Digital Signature – cont.

。 Digital signature algorithm used in secure bootloader : ECDSA P-256

▪ Private key (256 bits)

▪ Public key (256 + 256 bits)

▪ Signature (256 + 256 bits)

6

Data

Signature

SHA-256

ECDSA
Signrandom

number

Private Key

Data

ECDSA Signing

SHA-256

ECDSA
Verify

Equal

Public Key

Ok or Fail

ECDSA Verification

MA35D0 Key Store

⚫ Key Store OTP

➢ Support store key in Key Store OTP

➢ Store 1 AES key and 1 ECC public key pair for secure boot (key number: 6-8)

➢ Key Store can be set in the secure region and access only by secure OS, Linux can not accessible

➢ Secure boot key is set “not readable for CPU”

===

secure boot

===

"yes" boot from secure mode

"no" boot from normal mode

SECURE_BOOT = "yes"

The NuWriter will encrypt all relative files by AES,

and calculate the ECDSA signature

AES_KEY = "0A0BC81E5AFBF836C5E0CFBEA12C1E269A2EBC3B0B6EC39EEE1C7142F760EBC4"

ECDSA_KEY = "8F1571E9975006A545DF854264F7B18934B5CB2EE619E66DBC0FBEA52C71C919"

MA35D0 Secure boot with Yocto

⚫ Set the AES and ECC keys before build up image

➢ Yocto: /yocto/sources/meta-ma35d0/conf/machine/numaker-iot-ma35d06f80.conf

➢ $ bitbake core-image-minimal -c cleanall

➢ $ bitbake core-image-minimal

Private key

Bootloaders --->

[*] MA35D0 Secure Boot

(0A0BC81E5AFBF836C5E0CFBEA12C1E269A2EBC3B0B6EC39EEE1C7142F760EBC4) AES Key

(8F1571E9975006A545DF854264F7B18934B5CB2EE619E66DBC0FBEA52C71C919) ECDSA Key

$ make

MA35D0 Secure boot with Buildroot

⚫ Buildroot

➢ Write the key into config file through “make menuconfig” command.

Private key

MA35D0 Secure boot key program

⚫ Program aes and ecc public Keys into Key Store IBR region

➢ The NuWriter supports to program the keys into MA35D0 Key Store

➢ Use Prepare “key.json” to program the key : $ nuwriter.py –w otp key.json

{
"publicx": "72F84F681092E3A05C1437E3E40534962A5C70556025D348FF9DB97D6AF83EB5",
"publicy": "8D32DAC7AB6F90332E8E0060E159E0B31502BB4FB2D78369F02D1F5B0C335AD3",
"aeskey" : "0A0BC81E5AFBF836C5E0CFBEA12C1E269A2EBC3B0B6EC39EEE1C7142F760EBC4"

}

key.json

MA35D0 Boot Sequence with TF-A

⚫ Authenticate fail → run in while 1 loop

MA35D0 Secure boot – two level protection (1/2)

⚫ ECDSA with P-256 curve

➢ Use SHA256 and ECC to generate the signature of the image

➢ Verify the image during the power on stage before AES decryption

⚫ AES-256 CFB mode

➢ Encrypt firmware image into Storage e.g. SD/eMMC, NAND, SPI NOR..

➢ Decrypt firmware image after ECDSA pass and load image to the DDR

ECC private
key

AES key

MA35D0 Secure boot – two level protection (2/2)

⚫ Stealing only one key cannot break the security boot mechanism.

➢ Only have ECC public key cannot encrypt and decrypt the image

➢ Only have AES key cannot sign and verify the image

MA35D0
image

NuWriter

Storing ECC and AES
keys with different
methods enhances
security.

16

	Default Section
	投影片 1: MA35D0 Secure Boot
	投影片 2: MA35D0 TF-A FW Architecture
	投影片 3: MA35D0 Boot Sequence with TF-A
	投影片 4: MA35D0 Firmware Authentication (1/3)
	投影片 5: MA35D0 Firmware Authentication (2/3)
	投影片 6: MA35D0 Firmware Authentication (3/3)
	投影片 7: MA35D0 Key Store
	投影片 8: MA35D0 Secure boot with Yocto
	投影片 9: MA35D0 Secure boot with Buildroot
	投影片 10: MA35D0 Secure boot key program
	投影片 11: MA35D0 Boot Sequence with TF-A
	投影片 14: MA35D0 Secure boot – two level protection (1/2)
	投影片 15: MA35D0 Secure boot – two level protection (2/2)
	投影片 16

